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Abstract

An experiment is presented that enables the measurement of small chemical shift anisotropy tensors under fast magic-angle spin-
ning (MAS). The two-dimensional spectra obtained give a fast MAS sideband pattern in the directly observed dimension with the
spinning sideband intensities equivalent to the chemical shift anisotropy scaled by a factor of N, or equivalently the sample spinning
frequency scaled by 1/N, in the indirectly observed dimension. The scaling factor may be arbitrarily varied by changing the number
and timings of the rotor synchronized p-pulses used. Desirable features of the experiment include a fixed length pulse sequence and
efficient sampling of the indirectly observed dimension. In addition, neither quadrature detection in the indirect dimension nor stor-
age periods are required, consequently no signal intensity is discarded by the pulse sequence. The experiment is demonstrated using
31P NMR of sodium phosphate and 13C NMR of fumaric acid monoethyl ester for which a scaling factor of N = 10.2 was employed.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The measurement of chemical shift principal tensor
values has, for many years, been an established tech-
nique for investigating molecular structure and dynam-
ics in the field of solid-state NMR. If the effects of
other nuclear spin interactions are absent, or negligible,
the singularities in broad powder-pattern lineshapes ob-
served in the spectra of static powder samples can be
used to determine the chemical shift principal tensor val-
ues. For most samples, however, the overlap of powder
patterns from several chemical sites hinders the extrac-
tion of this information.

Magic-angle spinning (MAS) of the sample improves
the resolution of solid-state NMR spectra. If the spin-
ning frequency is of the order of the chemical shift
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anisotropy (CSA), or less, spinning sidebands spaced
at the sample spinning frequency and centred about
the isotropic shift are observed in the spectrum. The
intensities of these spinning sidebands may be used to
determine chemical shift principal tensor values [1,2].
For accurate results to be achieved, it is necessary that
many spinning sidebands are present in the spectrum:
about five significant spinning sidebands are needed to
determine the anisotropy (for asymmetry parameters
in the range 0.1 < g < 1), whilst 6–10 sidebands are re-
quired to determine the asymmetry (0.3 < g < 1) [3].
The assignment of numerous spinning sidebands in the
complex spectra of large molecules, with many different
chemical sites can complicate this sideband analysis.
Alternative methods are based on two-dimensional
experiments in which the chemical shift anisotropy is
recoupled in some form in one dimension of the experi-
ment, whilst isotropic signals are retained in the other to
provide the necessary resolution. One approach is to
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recouple chemical shift under MAS to obtain quasi-sta-
tic (scaled) powder patterns in the indirect dimension
separated by isotropic shifts in the directly observed
dimension, from which chemical shift parameters may
be simply read off the powder patterns under favourable
circumstances. Some of these experiments can often be
technically demanding, such as magic-angle-turning [4]
and variable-angle correlation [5]. However, a range of
such experiments exist which are relatively straightfor-
ward to implement and can give good results. The first
such method, due to Tycko et al. [6] is sensitive to pulse
imperfections and so has been modified by Schmidt-
Rohr and co-workers [7] in the SUPER experiment.
Both experiments have been utilized with good results,
although because of the large scaling of the chemical
shift anisotropy induced by the latter experiment, the
range of spinning frequencies under which it may be
used is relatively restricted.

Despite these developments, one fundamental prob-
lem remains: the chemical shift anisotropy information
is spread out over a broad powder pattern and so sig-
nal-to-noise is a very real issue, especially when dealing
with small samples, as is becoming increasingly common
with the uptake of solid-state NMR methodology by
biologists. In such cases, a far better approach is to distil
the chemical shift anisotropy information into discrete
sidebands. This is the approach of the 2D-PASS exper-
iment by Antzutkin et al. [8].

However, if the CSA is small, the need to measure the
intensities of several spinning sidebands introduces two
problems; the slow sample spinning frequency necessary
to observe sufficient numbers of spinning sidebands is
difficult to stabilize, and homonuclear dipolar interac-
tions affect the sideband intensities to a greater extent
at slow spinning rates. This has led to interest in devel-
oping 2D experiments that correlate an isotropic spec-
trum in one dimension with sideband intensities
similar to those obtained if the CSA were a factor of
N larger, or equivalently the sample spinning rate re-
duced by a factor of 1/N, in the other dimension [9–
14]. These experiments can be grouped into those that
give identical sideband intensities to those obtained in
the MAS spectra at the effective spinning rate (xr/N),
and experiments where intensities are altered.

This latter group has the disadvantage of requiring
non-conventional data analysis to determine the CSA
parameters. Falling in this group, one of the earliest
experiments that achieves the above aim is the spin-echo
experiment of Kolbert et al. [9]. A scaling factor of N is
accomplished using (N � 1) p-pulses spaced uniformly
throughout the incremented t1 period. While the simplic-
ity and comparatively few pulses required favour this
method, the more complex data analysis is undesirable.
The same processing problem arises in the recently re-
ported ROSES experiment [13]. The indirectly observed
dimension is sampled at intervals of sr + s; between
these times a delay s, which determines the scaling fac-
tor, is followed by a pair of p-pulses separated by half
a rotor period. The isotropic shift is scaled, but not sup-
pressed, in the x1 dimension; thus extensive sampling of
this dimension is required to achieve sufficient resolu-
tion. For long t1 periods, the number of p-pulses be-
comes large, and spectrometer and spinning stability is
likely to become important. However, very large scaling
factors (up to N = 30) have been demonstrated using
ROSES.

There are three experiments which give sidebands
intensities identical to the usual MAS spectra that would
be obtained at the scaled spinning frequency, and allow
determination of chemical shift tensor values by the
usual, well established, methods [1,2]. The extended
chemical-shift modulation (XCS) experiment has a con-
stant length pulse sequence of N rotor periods during
which (2N � 1) p-pulses are applied [10]. (N � 1) of
the p-pulses are fixed at the end of even rotor periods;
the remaining p-pulses are also separated by two rotor
periods, but their timing relative to the other pulses is
incremented during the experiment. Although the se-
quence allows evolution of the magnetization due to
the isotropic chemical shift in the indirectly observed
dimension, by combining two spectra and transforming
as specified by Gullion [10], the isotropic shift is re-
moved from this dimension. This leads to favourably
efficient sampling of the indirect dimension, as the num-
ber of t1 increments is only twice the maximum order of
spinning sideband to be measured. The SPEED MAS
experiment of Strohmeier and Grant uses essentially
the same pulse sequence as XCS [14]. Implemented as
they propose, it does not eliminate the isotropic shift
in the x1 dimension. Consequently, many t1 increments
are need, although reconstruction of the signal in the
indirectly observed dimension using replication was
demonstrated to reduce the number of increments neces-
sary to achieve good resolution.

In the CSA amplification method, two identical units
of four, five or seven p-pulses are applied over an integer
number of rotor periods [11,12]. These are separated by
a period during which the transverse magnetization is
stored along the z-axis of the rotating frame for a period
t1 that is varied throughout the two-dimensional exper-
iment. This method is a modification of the experiment
of De Lacroix et al. [15] and is related to the 2D-PASS
experiment [8]. Isotropic shifts in the x1 dimension do
not occur; thus, as with the XCS experiment, a minimal
number of t1 increments are required. Scaling factors up
to N = 12 have been demonstrated experimentally. The
CSA amplification method and the XCS method would
thus appear to be the experiments of choice when facing
the scenario of measuring small chemical shift anisotro-
pies. Their only potential drawback is the need for two
spectra in the case of the XCS experiment and a storage
period for the magnetization in the CSA amplification



R.M. Orr et al. / Journal of Magnetic Resonance 174 (2005) 301–309 303
experiment, which halves the final signal intensity. Thus
both experiments potentially suffer from sensitivity is-
sues not encountered in experiments where the chemical
shift anisotropy is not amplified. The ideal experiment
would be one in which the chemical shift anisotropy
could be amplified but signal not lost relative to an
unamplified chemical shift anisotropy determination
experiment. Here, we present a new experiment which
works towards that goal. This experiment is in essence
a combination of the 2D-PASS [8] and Titman and co-
workers� CSA amplification method [11,12].

The pulse sequence for the new experiment, which we
refer to for convenience as 2D CSA-amplified PASS, is
illustrated in Fig. 1A. Transverse magnetization is gen-
erated by cross-polarization [16], which is appropriate
for 13C NMR of organic solids. During the 2D experi-
ment the evolution period in the indirect dimension
has a fixed duration, however the timing of the rotor
synchronized p-pulses changes. Each slice of the experi-
ment is associated with a value of the variable H, which
is linearly incremented in a convenient number of steps
between 0 and 2p as the 2D spectrum is recorded. Each
value of H corresponds to a unique set of p-pulse times
that would be used for recording a slice of the 2D exper-
iment associated with this value. The p-pulse times as a
function of H are plotted for scaling factors N = 3 and
N = 2 in Fig. 1, where the evolution time is four rotor
periods. A sequence without storage periods, different
to that proposed here, was first suggested by Crockford
[17], although experimental results were not presented.
We note that 2D CSA-amplified PASS has a number
of favourable features; first, a gain in signal intensity
by a factor of 2 is achieved over experiments that require
either a storage period or where quadrature detection in
the indirect dimension is required. Second, in common
with the XCS and CSA amplification experiments, iso-
tropic shifts do not occur in the x1 dimension, leading
to efficient sampling of the indirect dimension. Finally,
Fig. 1. (A) The five pulse 2D CSA-amplified PASS sequence for scaling fa
magnetization generated using ramped cross-polarization (CP) [16,18]. Durin
and 2p; the p-pulse timings required for each value ofH are illustrated in the p
line plots the timing of one pulse as a function of H.
spinning sideband intensities are the same as in conven-
tional MAS spectra allowing routine analysis.
2. Theory

The orientation of the CSA principal axis frame with
respect to the rotor frame of reference is defined by the
Euler angles {a,b,c}. It is convenient to use the idea of
‘‘carousels� of crystallites, introduced by Levitt [19], that
have common Euler angles a and b. The rotating frame
precession frequency of each crystallite in a MAS sam-
ple is periodic with the rotor period and Fourier expan-
sion of this precession frequency may be made:

xcðt; cÞ ¼
X
m

xðmÞ
c ðcÞ expðimxrtÞ; ð1Þ

where the subscript index c indicates the carousel and xr

is the spinning frequency (xr = 2p/sr). For the chemical
shielding interaction it may be shown that the sum over
m is limited to the range �2 6 m 6 2 and that for a sam-
ple spinning at the magic-angle (tan�1

ffiffiffi
2

p
) the Fourier

coefficient xð0Þ
c is independent of c and equal to the iso-

tropic shift [20,21]. In addition, since any crystallite
within a carousel can be brought into the orientation
of another by rotation of the sample about the rotor
axis, the Fourier components obey the relation

xðmÞ
c ðcÞ ¼ xðmÞ

c ð0Þ expðimcÞ: ð2Þ

We follow the formalism and notation presented by
Antzutkin et al. [8] in their development of the 2D-PASS
experiment. The time coordinate is chosen such that
t = 0 coincides with the start of signal detection, and
the pulse sequence starts with transverse magnetization
at time t = �T. In the ideal case, this is followed by a se-
quence of n infinitely strong p-pulses given the index q,
q = 1,2, . . ., n, at times t = �T + sq. The five pulse case
is illustrated in Fig. 1A. The phase of the magnetization
ctors of N 6 3. The sequence is illustrated with the initial transverse
g the 2D experiment, the pseudo t1 variable H is incremented between 0
lots below the pulse sequence for N = 3 (B), and N = 2 (C), where each
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of an individual crystallite at the start of signal detec-
tion, assuming an initial phase of zero at t = �T, is gi-
ven by

/cð0; cÞ ¼ Ucð0;�T þ sn; cÞ � Ucð�T þ sn;�T þ sn�1; cÞ
� � � þ ð�1ÞnUcð�T þ s1;�T ; cÞ ð3Þ

with the function Uc defined as

Ucðtb; ta; cÞ ¼
Z tb

ta

xcðt; cÞdt; ð4Þ

¼ xð0Þ
c ðtb � taÞ þ ncðtb; cÞ � ncðta; cÞ; ð5Þ

ncðt; cÞ ¼
X
m6¼0

xðmÞ
c ðcÞ expðimxrtÞ

imxr

: ð6Þ

This gives the phase of the magnetization at the start of
signal acquisition to be

/cð0;cÞ¼xð0Þ
c sseqþncð0;cÞ

�ð�1Þn 2
Xn

q¼1

ð�1Þqnð�T þ sq;cÞþncð�T ;cÞ
" #

;

ð7Þ

sseq ¼ T � 2
Xn

q¼1

ð�1Þnþqsq: ð8Þ

In the directly observed dimension, the phase accumula-
tion of the magnetization of a crystallite during the t2
period is

Ucðt2; cÞ ¼ xð0Þ
c t2 þ ncðt2; cÞ � ncð0; cÞ: ð9Þ

To achieve the desired scaling effect of the CSA by a
factor of N in the indirect dimension, it is required that
the evolution of the magnetization due to the aniso-
tropic component of chemical shift is N times as rapid
in the indirect dimension as in the directly observed
dimension, whilst the isotropic shift is suppressed. Thus
the phase of the magnetization of each individual crys-
tallite at the start of signal detection must obey the
condition

/cð0; cÞ ¼ Nncð0; cÞ � Nnc � H
xr

; c

� �
; ð10Þ

sseq ¼ 0: ð11Þ

In this expression, �H/xr is a pseudo t1 variable that is
incremented during the experiment. H is varied between
0 and 2p in a convenient number of steps, of the order of
twice the desired number of sideband intensities. With
this condition fulfilled the contribution of a crystallite
to the detected signal is given by

sHc ðt2; cÞ ¼ exp i ðN � 1Þncð0; cÞ � Nnc � H
xr

; c

� ��

þncðt2; cÞ þ xð0Þ
c t2

�
expf�kðT þ t2Þg; ð12Þ
where k describes the relaxation rate of the transverse
magnetization.

Following the derivation for the signal intensity given
in the description of the chemical shift amplification
experiment [11,12], Fourier expansion of the terms in
Eq. (12) involving nc (t;c) may be made due to the peri-
odicity of this function:

expfincðt; cÞg ¼
Xþ1

k¼�1
CðkÞ

c ðcÞ expðikxrtÞ; ð13Þ

expfiNncðt; cÞg ¼
Xþ1

l¼�1
F ðlÞ

c ðcÞ expðilxrtÞ: ð14Þ

The Fourier coefficients in Eqs. (13) and (14) are defined
respectively by

CðkÞ
c ¼ 1

2p

Z sr

0

exp
X
m 6¼0

xðmÞ
c ðcÞexpðimxrtÞ

mxr

( )
expð�ikxrtÞdt;

ð15Þ

F ðkÞ
c ¼ 1

2p

Z sr

0

exp
X
m6¼0

½NxðmÞ
c ðcÞ� expðimxrtÞ

mxr

( )

expð�ikxrtÞdt; ð16Þ

¼ 1

2p

Z Nsr

0

exp
X
m6¼0

xðmÞ
c ðcÞ expði xr

N mt0Þ
m xr

N

( )

exp �i
xr

N
kt0

� �
dt0: ð17Þ

Note that Eqs. (15) and (16) differ by only a scaling of
the CSA by a factor of N. The change of variable be-
tween Eqs. (16) and (17), t = t 0/N, highlights the equiv-
alence of viewing this as a scaling of the sample spinning
frequency by a factor of 1/N. Eq. (12) is now re-ex-
pressed using these Fourier expansions:

sHc ðt2; cÞ ¼
X
l0

X
k0

X
l

X
k

F ðl0Þ
c ðcÞ½Cðk0Þ

c ðcÞ��½F ðlÞ
c ðcÞ��

� CðkÞ
c ðcÞ expfiðxð0Þ

c þ kxrÞt2g expðilHÞ
� expf�kðT þ t2Þg: ð18Þ

Substituting Eq. (2) into Eq. (18), and writing CðkÞ
c ð0Þ as

CðkÞ
c :

sHc ðt2; cÞ ¼
X
l0

X
k0

X
l

X
k

F ðl0Þ
c ½Cðk0Þ

c ��½F ðlÞ
c ��CðkÞ

c

� expfiðxð0Þ
c þ kxrÞt2g expðilHÞ

� expðiðk � k0 þ l0 � lÞcÞ expf�kðT þ t2Þg:
ð19Þ

If the sample is a finely divided powder, there is a con-
tinuous and uniform distribution of c orientations with-
in each carousel. The contribution to the measured
NMR signal from a carousel is therefore the integral
of Eq. (19) with respect to c. Following this integration,
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only the terms in the multiple summations with
k � k 0 + l 0�l = 0 remain:

sHc ðt2Þ ¼
X
l0

X
l

X
k

F ðl0Þ
c ½Cðkþl0�lÞ

c ��½F ðlÞ
c ��CðkÞ

c

� expfiðxð0Þ
c þ kxrÞt2g expðilHÞ

� expf�kðT þ t2Þg: ð20Þ

This initially predicts a complex 2D spectrum correlat-
ing the two fast and slow spinning sideband patterns,
but if the spinning sidebands in the directly observed
dimension are negligible, as may be the case if fast
MAS is used, only k = 0 is significant in the sum. If this
is not achieved, stroboscopic sampling at the spinning
frequency can be made so that the the spinning side-
bands are refocused at each point of signal detection
and the summation over k is implicitly measured, giving
the isotropic spectrum in the direct dimension. Alterna-
tively the summation over k can be evaluated from the
sideband correlation spectrum by adding the sideband
intensities to that of the central peak of the direct
dimension.

Eq. (20) corresponds to Eq. (15) in [12], and the sum-
mation over l 0 may be evaluated, as identified by Crock-
ford and co-workers [11,12], using the property of the
Fourier components:

Xþ1

k¼�1
CðnþkÞ

c ½CðkÞ
c �� ¼

1; n ¼ 0;

0; n 6¼ 0:

�
ð21Þ

The resulting signal is then is described by

sHc ðt2Þ ¼
X
l

F ðlÞ
c ½F ðlÞ

c �� expfixð0Þ
c t2gexpðilHÞexpf�kðT þ t2Þg:

ð22Þ

Following from Eqs. (15) and (16), the real quantity
F ðlÞ

c ½F ðlÞ
c �� is interpreted as the intensity of the lth spin-

ning sideband due to the carousel c, with the CSA scaled
by a factor of N. Averaging of Eq. (22) over all carou-
sels, and 2D complex Fourier transform with respect
to �H/xr and t2, demonstrates that the spectrum is rep-
resented by

Sðx1;x2Þ¼ expð�kT Þ
Xþ1

l¼�1
aðlÞ

k
kþ iðx2�xisoÞ

dðx1� lxrÞ;

ð23Þ
where a(l) is the intensity of the lth spinning sideband
with the scaled CSA. The spectrum has the required
form, a peak at the isotropic shift in the directly ob-
served dimension correlated with the spinning sideband
intensities corresponding to the CSA scaled by a factor
of N in the indirectly observed dimension. As stressed
earlier, this can equally be represented as a scaling of
the spinning frequency by 1/N by simply scaling the
frequency axis in the indirect dimension by 1/N. The
constant pulse sequence length ensures that the
relaxation in the effective t1 dimension simply scales
the intensity of the whole spectrum by expð�kT Þ and
the relative sideband intensities are of the same form
as in the 1D MAS spectrum at the effective spinning fre-
quency of xr/N.
3. Calculation of pulse sequences

Defining the quantities Hq = sqxr and HT = Txr [8],
from Eq. (10), the pulse sequence for the period
�T 6 t 6 0 must fulfil the following condition, for all
crystallite orientations:

0 ¼ ð�1Þn 2
Xn

q¼1

ð�1Þq
X
m6¼0

xðmÞ
c ðcÞeðimðHq�HT ÞÞ

imxr

"

þ
X
m6¼0

xðmÞ
c ðcÞeð�imHT Þ

imxr

#
þ ðN � 1Þ

X
m6¼0

xðmÞ
c ðcÞ
imxr

�N
X
m 6¼0

xðmÞ
c ðcÞeð�imHÞ

imxr

: ð24Þ

By equating terms with equal coefficients in
xðmÞ

c ðcÞ=ðimxrÞ, we obtain

0 ¼ ðN � 1ÞeðimHT Þ � NefimðHT�HÞg

þ ð�1Þn 2
Xn

q¼1

ð�1ÞqeðimHqÞ þ 1

" #
ð25Þ

for m = 1 and m = 2. To prevent phase accumulation
due to the isotropic shift, a further condition, Eq. (11),
must also be satisfied:

HT � 2
Xn

q¼1

ð�1ÞnþqHq ¼ 0: ð26Þ

Eq. (26) and the real and imaginary parts of Eq. (25)
provide five non-linear simultaneous equations that are
solved numerically to determine the required pulse tim-
ings for 0 6 H < 2p. Numerical searches were imple-
mented using Mupad [22] and required only a few
seconds to find solutions, a Mupad procedure is avail-
able on request from the authors to calculate pulse
times. The additional constraint that the sequence is of
constant length for all values of H is also imposed.

For five p-pulse sequences, solutions to Eqs. (25) and
(26) are readily calculated for 1 6 N 6 3.4. In particular,
sequences of a total length of one rotor period can be
found with a scaling factor 1 6 N < 2. For scaling fac-
tors in the range 2 6 N 6 3.4 the shortest sequences,
which avoid pulse collisions and have p-pulses well sep-
arated in time, are T = 4sr in length. Using pulses
spaced over four rotor periods may have the advantage
that the effects due to finite pulse lengths will be less,
particularly at higher spinning frequencies, than using
pulses applied over a single rotor period. The pulse tim-



Table 1
Cogwheel phase cycles, suitable for the 2D CSA-amplified PASS
sequences, that do not require variation of the recorder or post
digitizer phases (/rec + /dig = 0 in each case)

Number of
p-pulses (n)

Cogwheel phase cycle

X-channel CP pulse p-Pulses

5 /CP ¼ �6�2pj
13 /q¼even ¼ �6�2pj

13 , /q¼odd ¼ �5�2pj
13

11 /CP ¼ �12�2pj
25 /q¼even ¼ �12�2pj

25 , /q¼odd ¼ �11�2pj
25

17 /CP ¼ �18�2pj
37 /q¼even ¼ �18�2pj

37 , /q¼odd ¼ �17�2pj
37

The index q identifies the p-pulse number within a sequence
(1 6 q 6 n); the required phase of the pulse only depends on whether q
is even or odd. Variable j starts from zero and is increased by 1 fol-
lowing each scan of the experiment.

Fig. 2. Schematic form of the 11 pulse sequence constructed from two
five-pulse units, separated by a p-pulse. The overall scaling factor is the
sum of each five pulse unit: NTotal = N1 + N2.
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ings as a function of H are plotted for N = 3 in Fig. 1B
and N = 2 in Fig. 1C.

We have not found five p-pulse sequences that
achieve larger scaling factors than N = 3.4. However,
pulse sequences that do achieve higher scaling factors
can be constructed by concatenating the basic five-pulse
units, to achieve an overall scaling factor of equal to the
sum of the scaling factor of each unit. This scheme is
illustrated in Fig. 2. An additional p-pulse between adja-
cent five-pulse units is required so that coherences fol-
lows the same transfer pathway during each repetition
of the five-pulse unit, otherwise the phase accumulation
under the anisotropic components of chemical shift will
be refocused by the repeated unit. This gives sequences
of 11 and 17 p-pulses, with maximum scaling factors
of 6.8 and 10.2. Larger scaling factors may, of course,
be obtained using longer sequences, provided spectrom-
eter stability can be ensured.
4. Phase cycling

Due to the use of several p-pulses at times synchro-
nized with the sample spinning, the sequences are sensi-
tive to experimental imperfections resulting from sample
spinning instability, pulse miscalibration and field
inhomogeneity. The effects of pulse imperfections are
significantly reduced by phase cycling the X-channel
cross-polarization pulse and each p-pulse. The required
coherence transfer pathway for the five p-pulse 2D
CSA-amplified PASS sequence is 0 fi +1 fi �1fi
+1 fi �1 fi +1 fi �1. Conventional phase cycling
increments the phase of each p-pulse independently in
steps of 2p/3; this uniquely selects the desired coherence
pathway but requires 35 = 243 phase cycle steps. This
may be inconvenient for many samples, if recording so
many scans is greater than is needed to achieve an
acceptable signal-to-noise ratio, or impractical if a long
pulse delay is required. When using the sequences of 11
or 17 p-pulses, phase cycles of 177,147 and 1.291 · 108

steps, respectively will certainly be impossible. The
recently developed cogwheel phase cycling approach
dramatically reduces the number of phase cycling steps
required in these experiments. A phase cycle of only
thirteen steps is needed to eliminate the effects of pulse
miscalibration, field inhomogeneity, quadrature arte-
facts and zero-frequency artefacts for the five p-pulse
sequence [23,24]. For the 11 p-pulse sequence the
number of steps required is 25, and for the 17 p-pulse
sequence 37 steps are needed to achieve the same level
of coherence pathway selection and artefact elimination.
Examples of explicit phase cycles that do not require
cycling of the receiver or detector phase are given in
Table 1.
5. Experimental

32P NMR experiments were performed on a Varian
Infinityplus spectrometer, operating at 202.341 MHz
for 31P, using a 4 mm rotor. The pulse sequence used
is illustrated in Fig. 1A with pulse timings achieving a
scaling factor of N = 3, although the cross-polarization
step and proton decoupling was omitted with 31P trans-
verse magnetization generated by a p/2-pulse. The 31P p-
pulse length was 12 ls and spinning frequency used was
5 kHz. The delay between scans was 600 s. The slow
relaxation rate prevented even the proposed cogwheel
phase cycling being implemented and instead fixed
phases of the p-pulses of 0�, 330�, 60�, 330�, 0� were
used, which have been reported to reduce the effects of
pulse imperfections [20,11]. 13C NMR experiments were
implemented using a Bruker Avance spectrometer oper-
ating at 100.56 MHz for 13C and 399.98 MHz for 1H,
using a 4 mm rotor. TPPM 1H decoupling [25] was used
with a field strength of 93 kHz, 13C p-pulses were 5.7 ls
and the contact time was 2 ms. A 17 p-pulse sequence
was used, with 50 increments of H and cogwheel phase
cycling of the pulses, to achieve a scaling factor of
N = 10.2 at a spinning frequency of 5750 Hz. Sodium
phosphate (Na3PO4) and fumaric acid monoethyl ester
were obtained from Sigma–Aldrich and used without
further purification.
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6. Results and discussion

The MAS spectra of sodium phosphate spinning at
500 and 1666 Hz are shown in Figs. 3A and B. The ef-
fects of homonuclear dipolar coupling clearly dominate
the spectrum spinning at 500 Hz, this suggests an appli-
cation of this technique to samples for which slow spin-
ning cannot be used to determine the chemical shift
anisotropy from a simple one-dimensional experiment,
even though there is only a single site. Faster spinning
largely removes the effects of homonuclear dipole cou-
pling, Fig. 3B, but leaves insufficient sidebands for
quantitative CSA analysis.

As an experimental demonstration of the 2D CSA-
amplified PASS sequence we have compared the inte-
grated sideband intensities from the 1D MAS spectrum
shown in Fig. 3B, which represents the lowest spinning
rate at which 31P homonuclear effects are largely absent.
Although the number of sidebands is insufficient to
determine the asymmetry parameter accurately, they
are adequate to demonstrate the experiment, and the
sample is convenient as only a single phosphorous site
is present. These spinning sidebands are plotted as the
solid line in Fig. 3D, and superimposed are the
integrated sideband intensities obtained from the 2D
CSA-amplified PASS spectrum with the same effective
spinning frequency in Fig. 3C, shown as the dashed line
and circles. The small residual sidebands in the direct
Fig. 3. Experimental 31P NMR spectra of Na3PO4. (A) MAS spectrum spin
amplified PASS spectrum at a spinning frequency of 5000 Hz, using a 2D CS
sideband intensities of the 1D MAS spectrum spinning at 1666 Hz shown in
experiment shown in (C) (dashed line and open circles).
dimension of the 2D CSA-amplified PASS spectrum
spinning at 5000 Hz were added to the isotropic peak
intensity to ensure accurate results. As expected, the
integrated sideband intensities obtained from the 2D
experiment are consistent with those obtained at the
effective spinning frequency.

As a second example, the results for 13C in fumaric
acid monoethyl ester are given in Fig. 4, where a scaling
factor of N = 10.2 is employed. Significant sideband
intensities in the directly observed dimension were again
added to the isotropic peak intensities to ensure accurate
results. Numerical fits to the data were calculated using
SIMPSON [26]; the simplex method was used to mini-
mize the root mean square difference between the simu-
lated and experimental data. For all six 13C sites in the
molecule good fits were obtained and values of the
chemical shift anisotropy and asymmetry were deter-
mined, with the exception of the CH3 site for which
the asymmetry parameter was poorly defined.

A comparison with other experiments that can be
used to extract the same information can be made. Table
2 shows the number of p-pulses used and length of the
pulse sequences of 2D CSA-amplified PASS, CSA
amplification, XCS and SPEED. Although the number
of p-pulses in the 2D CSA-amplified PASS are applied
over a larger number of rotor periods, the number of
p-pulses required is similar to the XCS and SPEED
experiments for similar CSA amplification factors. For
ning at 500 Hz. (B) MAS spectrum spinning at 1666 Hz. (C) 2D CSA-
A-amplified PASS sequence with scaling factor N = 3. (D) Integrated
(B) (solid line), and those derived from the 2D CSA-amplified PASS



Fig. 4. Experimental 13C NMR spectra of fumaric acid monoethyl ester at a spinning frequency of 5750 Hz. Asterisks mark spinning sidebands. (a–f)
Experimental side band intensities determined using the 2D CSA-amplified PASS of this work (filled circles) for each isotropic peaks labelled in the
1D-spectrum, with an effective spinning frequency of 564 Hz (true spinning frequency of 5750 Hz and scaling factor N = 10.2). Simulated best fits are
illustrated by the overlaid lines and asterisks, together with the CSA and asymmetry parameters used.

Table 2
Comparison of 2D CSA-amplified PASS sequences with CSA amplification [11,12], XCS [10] and SPEED [14]

N 2D CSA-amplified PASS CSA amplification [11,12] XCS [10]/SPEED [14]

p-pulses Lengtha/sr p-pulses Lengtha/sr p-pulses Lengtha/sr

2 5 4 8ðþ2 p
2 � pulsesÞ 5 3 2

3 5 4 8ðþ2 p
2 � pulsesÞ 5 5 3

4 11 5 8ðþ2 p
2 � pulsesÞ 5 7 4

5 11 8 8ðþ2 p
2 � pulsesÞ 5 9 5

6 11 8 8ðþ2 p
2 � pulsesÞ 5 11 6

7 17 9 10ðþ2 p
2 � pulsesÞ 7 13 7

8 17 12 10ðþ2 p
2 � pulsesÞ 7 15 8

9 17 12 14ðþ2 p
2 � pulsesÞ 9 17 9

10 17 12 14ðþ2 p
2 � pulsesÞ 9 19 10

11 23 16 14ðþ2 p
2 � pulsesÞ 9 21 11

12 23 16 14ðþ2 p
2 � pulsesÞ 9 23 12

a Duration of the pulse sequence from the end of the cross-polarization pulse, to the start of signal detection.
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amplication factors of 7 and above, the 2D CSA-ampli-
fied PASS experiment requires 5 or more additional
pulses to the CSA amplification method and delivered
over a longer time period (2sr longer for an amplifica-
tion factor of 7; 7sr for an amplification factor of 12).
The more pulses applied and the longer the duration
of the sequence, the lower the potential sensitivity of
the experiment. Thus it may be that for higher chemical
shift amplification factors, the extra sensitivity gained in
the 2D CSA-amplified PASS experiment by the absence
of a storage period is lost when compared with the
chemical shift amplification method. To a certain extent,
such considerations will be both spectrometer and sam-
ple dependent and there is no clear choice in general un-
til very large amplification factors are reached. Further
advantages of the 2D CSA-amplified PASS experiment
are the fixed length of the pulse sequence for all H,
which prevents phasing effects that can result from dif-
fering degrees of transverse relaxation in signals ac-
quired for different t1 increments and the fact that
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phase cycling using a practical number of steps, can be
implemented to select a single coherence pathway, which
compensates for the effects of pulse imperfections, field
inhomogeneity and other artefacts. In practice it may
be possible to use cogwheel phase cycling in the other
experiments discussed, to enable a reduction in the num-
ber of phase cycles.
7. Conclusion

An experiment to measure chemical shift tensors
that are small compared with the spinning frequency
has been demonstrated, and the method for the con-
struction of the required pulse sequences to achieve a
wide range of scaling factors, N, has been detailed.
The experiment has been successfully demonstrated
with a scaling factor of N = 10.2 for 13C in fumaric
acid monoethyl ester, spinning sideband patterns for
all six 13C sites in this compound were shown to
be accurately produced by the experiment through
simulations.
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